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Abstract. This paper is concerned with the parameter estimation problem for a class
of diffusion process with drift coefficient αX2γ−1

t and diffusion coefficient σXγ
t from

discrete observation. Euler-Maruyama scheme and iterative method are used to get
the joint conditional probability density function. The maximum likelihood approach
is applied for obtaining the parameter estimators and the explicit expressions of the
error of estimation are given. The strong consistency of the estimators and asymptotic
normality of the error of estimation are proved by using the law of large numbers for
martingales, the strong law of large numbers and central-limit theorem. Hypothesis
testing is made to verify the effectiveness of the estimation method used in this paper.
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1. Introduction

Each field is more or less influenced by the random factors and diffusion process
is an important tool to study the random phenomenon. Moreover, diffusion
processes defined by stochastic differential equation are widely used for model
building in astronomy, engineering, medical science and physical ([3, 13]). A
recent application is in the area of financial economics ([5, 21]). The Black-
Scholes option pricing model described by a geometric Brownian motion ([6])
and the Vasicek and Cox-Ingersoll-Ross models developed based on two spe-
cific mean-reverting diffusion processes ([22, 8, 9]) are widely used models in
economic cases. However, in engineering practice, duo to the interference of
random factors, part or all of parameters in diffusion process are always un-
known. Parameters are needed to be estimated for the purpose of obtaining
proper structures. Therefore, statistical inference for diffusion processes is of
great importance from the theoretical as well as from an application point of
view in model building.

In the past few decades, some methods have been used to estimate the
parameters for diffusion process from continuous-time observation. For exam-
ple, Kutoyants[16] used Bayes method to study the parameter estimation prob-
lem for diffusion process defined by nonlinear stochastic differential equation.
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Yoshida[24] applied M-estimation to discuss the consistency of the parameter
estimators. Khasminskii[14] considered the effectiveness of the estimators by
using likelihood ratio function. Barczy[2] analyzed the consistency of the es-
timator by applying maximum likelihood estimation. Wei[23] used maximum
likelihood approach to study the strong consistency of the estimator and asymp-
totic normality of the error of estimation. However, in fact, it is impossible to
observe a process continuously in time. Therefore, parametric inference based
on sampled data is important in dealing with practical problems. In earlier
literatures, some methods have been applied to research the parameter estima-
tion problem for continuous-time diffusion process from discrete observation.
Prakasa Rao[20] used least squares estimation to study the consistency of the
estimator. Florens-Zmirou[10] considered the weak convergence of the mini-
mum contrast estimator. Bibby[4] constructed the martingale estimating func-
tion with zero mean to estimate the parameter for ergodic diffusion process.
Jacod[12] discussed the convergence in probability of the estimator by using the
construct function. Kuang[15] studied the Berry-Esseen boundedness of the esti-
mator. Other methods such as generalized method of moments ([11]), Bayesian
estimation([18, 19]) and approximation of the transition function([1, 7, 17]) have
been used to estimate the parameters for diffusion processes as well.

In this paper, the parameter estimation problem for a class of diffusion pro-
cess defined by a nonlinear stochastic differential equation is studied from dis-
crete observation. Although parameter estimation for diffusion process has been
investigated by many authors from discrete observation, the asymptotic normal-
ity of the estimator for the parameter in diffusion item and the hypothesis test-
ing have not been discussed in earlier literatures. In our work, Euler-Maruyama
scheme is used to discrete the process and the joint conditional probability den-
sity function is given. The explicit expression of the parameter estimators and
the error of estimation are obtained. The strong consistency of the estima-
tors and asymptotic normality of the error of estimation are proved by using
the law of large numbers for martingales, the strong law of large numbers and
central-limit theorem. Hypothesis testing is made to verify the effectiveness of
the estimation method.

This paper is organized as follows. In Section 2, the joint conditional prob-
ability density function and the explicit expression of the parameter estimators
are provided. In Section 3, the strong consistency of the estimators and asymp-
totic normality of the error of estimation are proved. In Section 4, hypothesis
testing is made to verify the effectiveness of the estimators. Conclusion is given
in Section 5.

2. Problem formulation and preliminaries

In this paper, we study the parameter estimation problem for a class of diffusion
process described by the following nonlinear stochastic differential equation:
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{
dXt = αX2γ−1

t dt+ σXγ
t dBt

X0 = x0.
(1)

where Bt is a standard Wiener process, α and σ are two unknown parameters,
γ is a constant and γ ∈ (1, 32 ].

When γ = 1, (1) is a popular economic model called Black-Scholes Model.
As it is a linear model, we do not consider it here. Due to the complexity of
the transitional density function, it is difficult to obtain the commonly used
expression for the unknown parameters. Therefore, numerical method should
be used to obtain the approximate likelihood function.

From now on we shall work under the assumptions below.

Assumption 1. α < 0, σ > 0. x0 is positive and independent with Bt.

Assumption 2. supt E|Xt| < ∞, supt E 1
|Xt| < ∞.

Now the specific steps for obtaining the approximate likelihood function and
the estimators is given below.

Let Yt = X1−γ
t , then equation (1) is changed to an equivalent equation,

which is:

(2) dYt = (1− γ)(α− 1

2
γσ2)

1

Yt
dt+ (1− γ)σdBt.

It is assumed that the process is observed at times {t0, t1, ..., tn} where ti =
i∆, i = 1, 2, ..., n and ∆ > 0. Discretizing equation (1), it follows that

(3) Yti − Yti−1 = (1− γ)(α− 1

2
γσ2)

1

Yti−1

∆+ (1− γ)σ
√
∆εti ,

where ti = i∆, εti is a i.i.d. N(0,1) sequence and for every i, εti is independent
with {Ytj , j < i}.

Let Fi−1 = σ(Ytj , j ≤ i− 1). For the given Fi−1, the conditional probability
density function of Yti is:

f(Yti |Fi−1) =
1√

2π∆(1− γ)σ

· exp{−
(Yti − Yti−1 − (1− γ)(α− 1

2γσ
2) 1

Yti−1
∆)2

2(1− γ)2σ2∆
}.(4)

Thus, for the given F0, the joint conditional probability density function of
{Yt1 , Yt2 , ..., Ytn} is:

f(Yt1 , Yt2 , ..., Ytn |F0) = (
1√

2π∆(1− γ)σ
)n·

n∏
i=1

exp{−
(Yti − Yti−1 − (1− γ)(α− 1

2γσ
2) 1

Yti−1
∆)2

2(1− γ)2σ2∆
}.(5)
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Therefore, the likelihood function is given as follows:

Ln(α, σ
2) = −n

2
lnσ2 − 1

2(1− γ)2σ2∆

·
n∑

i=1

(Yti − Yti−1 − (1− γ)(α− 1

2
γσ2)

1

Yti−1

∆)2.(6)

Solving the equation set:
∂Ln(α, σ

2)

∂α
=0

∂Ln(α, σ
2)

∂σ2
=0,

(7)

we obtain the estimators:

σ̂2 =

∑n
i=1(Yti − Yti−1)

2
∑n

i=1
1

Y 2
ti−1

− (
∑n

i=1

Yti−Yti−1

Yti−1
)2

n∆(1− γ)2
∑n

i=1
1

Y 2
ti−1

α̂ =
γ

2
σ̂2 +

∑n
i=1

Yti−Yti−1

Yti−1

∆(1− γ)
∑n

i=1
1

Y 2
ti−1

.

(8)

3. Main results and proofs

In the following theorem, the strong consistency of two parameter estimators
are proved by using the law of large numbers for martingales and the strong law
of large numbers.

Theorem 1. Under the Assumptions (1) and (2), σ̂2 and α̂ are strongly con-
sistent.

Proof. From (3), one has

n∑
i=1

(Yti − Yti−1)
2

n∑
i=1

1

Y 2
ti−1

= (1− γ)2(α− 1

2
γσ2)2∆2(

n∑
i=1

1

Y 2
ti−1

)2 + (1− γ)2σ2∆

n∑
i=1

1

Y 2
ti−1

n∑
i=1

ε2ti(9)

+2(1− γ)2σ(α− 1

2
γσ2)∆

3
2

n∑
i=1

εti
Yti−1

n∑
i=1

1

Y 2
ti−1

,
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and

(
n∑

i=1

Yti − Yti−1

Yti−1

)2

= (1− γ)2(α− 1

2
γσ2)2∆2(

n∑
i=1

1

Y 2
ti−1

)2 + (1− γ)2σ2∆(

n∑
i=1

εti
Yti−1

)2(10)

+2(1− γ)2σ(α− 1

2
γσ2)∆

3
2

n∑
i=1

εti
Yti−1

n∑
i=1

1

Y 2
ti−1

.

Substituting (9) and (10) into the expression of σ̂2, it is checked that

(11) σ̂2 =

σ2
∑n

i=1
1

Y 2
ti−1

∑n
i=1 ε

2
ti − σ2(

∑n
i=1

εti
Yti−1

)2

n
∑n

i=1
1

Y 2
ti−1

.

Thus, the error of estimation is

(12) σ̂2 − σ2 = σ2(
1

n

n∑
i=1

ε2ti − 1)−
σ2( 1n

∑n
i=1

εti
Yti−1

)2

1
n

∑n
i=1

1
Y 2
ti−1

.

Since εti is a i.i.d. N(0,1) sequence, ε2ti is also a i.i.d. sequence and E[ε2ti ] = 1.
According to the strong law of large numbers, one has

(13)
1

n

n∑
i=1

ε2ti − 1
a.s.→ 0.

Now we will prove that
∑n

i=1
εti

Yti−1
is a martingale with zero mean with

respect to the σ-algebra Fn−1 = σ( 1
Ytj

, εtj ; 0 ≤ j ≤ n− 1).

Since

E[
n∑

i=1

εti
Yti−1

/Fn−1] =
n−1∑
i=1

εti
Yti−1

+ E[
εtn
Ytn−1

/Fn−1] =
n−1∑
i=1

εti
Yti−1

,

and

E[
n∑

i=1

εti
Yti−1

] =

n∑
i=1

E[
εti
Yti−1

] = 0,

it follows that
∑n

i=1
εti

Yti−1
is a martingale with zero mean with respect to the σ-

algebra Fn−1 = σ( 1
Ytj

, εtj ; 0 ≤ j ≤ n− 1). As E[( εti
Yti−1

)2] = E[ 1
Y 2
ti−1

] is bounded,

form the law of large numbers for martingales, we obtain that

(14)
1

n

n∑
i=1

εti
Yti−1

a.s.→ 0, (n → ∞).
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Thus, it can be checked that

(15) (
1

n

n∑
i=1

εti
Yti−1

)2
a.s.→ 0, (n → ∞).

Let

(16) YM = sup
0≤ti−1<∞

{Yti−1}, YN = inf
0≤ti−1<∞

{Yti−1},

then we obtain that

(17)
1

1
n

∑n
i=1

1
Y 2
ti−1

≤ Y 2
M .

From above results, it is checked that

(18) σ̂2 − σ2 a.s.→ 0, (n → ∞).

Next we will prove that α̂− α
a.s.→ 0, (n → ∞).

From (3), one has

(19)
n∑

i=1

Yti − Yti−1

Yti−1

= (1− γ)(α− 1

2
γσ2)∆

n∑
i=1

1

Y 2
ti−1

+ (1− γ)σ
√
∆

n∑
i=1

εti
Yti−1

.

Sunstituting (19) into the expression of α̂, we obtain that

α̂ =
γ

2
σ̂2 +

(1− γ)(α− 1
2γσ

2)∆
∑n

i=1
1

Y 2
ti−1

+ (1− γ)σ
√
∆

∑n
i=1

εti
Yti−1

(1− γ)∆
∑n

i=1
1

Y 2
ti−1

=
γ

2
σ̂2 + α− γ

2
σ2 +

σ
∑n

i=1
εti

Yti−1√
∆

∑n
i=1

1
Y 2
ti−1

.

Therefore, it can be checked that

(20) α̂− α =
γ

2
(σ̂2 − σ2) +

σ 1
n

∑n
i=1

εti
Yti−1√

∆ 1
n

∑n
i=1

1
Y 2
ti−1

.

Since 1
n

∑n
i=1

εti
Yti−1

a.s.→ 0 and 1
1
n

∑n
i=1

1

Y 2
ti−1

≤ Y 2
M , one has

(21) α̂− α
a.s.→ 0, (n → ∞).

Thus, σ̂2 and α̂ are strongly consistent.
The proof is complete.
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In the following theorem, the asymptotic normality of the error of estimation
is proved by applying the law of large numbers for martingales, the strong law
of large numbers and central-limit theorem.

Theorem 2. Under the Assumptions (1) and (2),
√
n(σ̂2 − σ2)

d→ N(0, 2σ4).

Proof. From the expression of σ̂2 − σ2, one has

(22)
√
n(σ̂2 − σ2) = σ2√n(

1

n

n∑
i=1

ε2ti − 1)−
σ2√n 1

n2 (
∑n

i=1
εti

Yti−1
)2

1
n

∑n
i=1

1
Y 2
ti−1

.

Since E[ 1n
∑n

i=1(ε
2
ti −1)] = 0 and var[ 1n

∑n
i=1(ε

2
ti −1)] = 2

n , from the central-
limit theorem, it is checked that

(23) σ2√n(
1

n

n∑
i=1

ε2ti − 1)
d→ N(0, 2σ4).

Since

E[
√
n
1

n2
(

n∑
i=1

εti
Yti−1

)2] = E[
√
n
1

n2

n∑
i=1

ε2ti
Y 2
ti−1

+
√
n
1

n2

n∑
i ̸=j

εtiεtj
Yti−1Ytj−1

] → 0.

According to Chebyshev inequality, one has

(24)
√
n
1

n2
(

n∑
i=1

εti
Yti−1

)2
P→ 0.

Thus, we obtain that

(25)

√
n 1
n2 (

∑n
i=1

εti
Yti−1

)2

1
n

∑n
i=1

1
Y 2
ti−1

P→ 0.

From above results, one has

(26)
√
n(σ̂2 − σ2)

d→ N(0, 2σ4).

The proof is complete.

4. Hypothesis testing

In this section, we will introduce an example in the case of γ = 3
2 in (1), which

is described by the following stochastic differential equation:{
dXt = αX2

t dt+ σX
3
2
t dBt

X0 = x0.
(27)
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This is a economic model called Constantinides-Ingersoll model. We make
the hypothesis testing for this example below.

We consider the testing problem as follows:

H0 : σ
2 = σ2

0, H1 : σ
2 ̸= σ2

0,

and the limit distribution of the test statistic based on this estimation.

Define:

(28) Zn =

√
n√
2σ2

(σ̂2 − σ2),

then

(29) Zn
d→ N(0, 1).

As the significance level is 0.05, if |Zn| ≥ Z0.975, we refuse the original
hypothesis.

When the confidence level is 0.95, the confidence interval of σ2 is

(30) [
σ̂2

1 +
√
2√
n
Z0.975

,
σ̂2

1−
√
2√
n
Z0.975

].

We assume that {εti} ∼ N(0, 1). For every given true value of the parameters-
α and σ2, the size of the sample is represented as “Size n” and given in the first
column of the table. In Table 1, ∆ = 1, the size of the sample is increasing from
100 to 500. In Table 2, ∆ = 0.01, the size is increasing from 10000 to 50000.
These two tables list the value of “α −MLE”, “σ2 −MLE” and the absolute
error of MLE(Maximum Likelihood Estimator). Table 1 and Table 2 illustrate
that the absolute error of α and σ2 depend on the size of given value of α and σ2.
But under the hypothesis of normal distribution, there is no obvious difference

between estimators and true value, estimators-α̂, σ̂2 are good.

Table 1: MLE simulation results of α and σ2 ∆ = 1

True Aver AE

(σ2, α) Size n σ̂2 α̂ σ2 α

(0.1,-0.1)
100 0.1116 -0.0928 0.0116 0.0072
200 0.1059 -0.0975 0.0059 0.0025
500 0.0998 -0.1010 0.0002 0.0010

(0.3,-0.2)
100 0.3208 -0.1799 0.0208 0.0201
200 0.3165 -0.1894 0.0165 0.0106
500 0.2992 -0.2032 0.0008 0.0032

(0.5,-0.4)
100 0.5206 -0.3836 0.0206 0.0164
200 0.5138 -0.3892 0.0138 0.0108
500 0.4990 -0.4039 0.0010 0.0039

(0.7,-0.6)
100 0.6832 -0.6186 0.0168 0.0186
200 0.6884 -0.6108 0.0116 0.0108
500 0.6993 -0.6027 0.0007 0.0027
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Table 2: MLE simulation results of α and σ2 ∆ = 0.01

True Aver AE

(σ2, α) Size n σ̂2 α̂ σ2 α

(0.1,-0.1)
10000 0.1006 -0.0944 0.0006 0.0056
20000 0.0996 -0.0932 0.0004 0.0068
50000 0.0999 -0.0957 0.0001 0.0043

(0.3,-0.2)
10000 0.3010 -0.1973 0.0010 0.0027
20000 0.2995 -0.1984 0.0005 0.0016
50000 0.2998 -0.1998 0.0002 0.0002

(0.5,-0.4)
10000 0.5012 -0.3978 0.0012 0.0022
20000 0.4996 -0.3994 0.0004 0.0006
50000 0.4998 -0.4010 0.0002 0.0010

(0.7,-0.6)
10000 0.7025 -0.6008 0.0025 0.0008
20000 0.6986 -0.6026 0.0014 0.0026
50000 0.6995 -0.6035 0.0005 0.0035

Next we give some simulation results of the confidence interval of σ2 under
0.95 confidence level. In Table 3, we suppose that {εi} ∼ N(0, 1). For every
given true value of σ2, let ∆ = 0.1, the size of the sample is increasing from

1000 to 10000. This table lists the value of σ̂2 and in the last column of the
table lists the confidence interval of σ2. Table 3 illustrates that the length of the
confidence interval is becoming small when the size of the sample is increasing.

Table 3: simulation results of confidence interval of σ2 ∆ = 0.1

True Aver 0.95

(σ2, α) Size n σ̂2 α̂

(0.3,-0.2)

1000 0.3054 -0.2036 [0.2786,0.3324]
2000 0.3032 -0.2025 [0.2875,0.3246]
5000 0.3019 -0.2018 [0.2904,0.3148]
10000 0.3008 -0.2006 [0.2931,0.3092]

(0.5,-0.4)

1000 0.5062 -0.4053 [0.4651, 0.5548]
2000 0.5043 -0.4046 [0.4792, 0.5423]
5000 0.5028 -0.4031 [0.4845,0.5247]
10000 0.5016 -0.4017 [0.4883,0.5162]

(0.7,-0.6)

1000 0.7068 -0.6061 [0.6513,0.7768]
2000 0.7051 -0.6052 [0.6704,0.7592]
5000 0.7036 -0.6033 [0.6784,0.7334]
10000 0.7019 -0.6010 [0.6832, 0.7221]

(0.9,-0.8)

1000 0.9157 -0.8103 [0.8378,0.9988]
2000 0.9112 -0.8066 [0.8623,0.9763]
5000 0.9064 -0.8048 [0.8722,0.9434]
10000 0.9030 -0.8007 [0.8786,0.9287]
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5. Conclusion

The aim of this paper is to estimate the parameters for a class of nonlinear
stochastic differential equation. The likelihood function has been given by using
Euler method, the explicit expressions of estimators and the error of estimation
have been obtained. The strong consistency of the estimators and asymptotic
normality of the error of estimation have been proved by using the law of large
numbers for martingales, the strong law of large numbers, Chebyshev inequality
and central-limit theorem. Further topics will consider the parameter estimation
for commonly nonlinear stochastic differential equation and stochastic differen-
tial equation driven by Lévy noises.
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